Convergence Analysis of Sampling-Based Decomposition Methods for Risk-Averse Multistage Stochastic Convex Programs

نویسنده

  • Vincent Guigues
چکیده

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent. AMS subject classifications: 90C15, 90C90.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling-Based Decomposition Methods for Multistage Stochastic Programs Based on Extended Polyhedral Risk Measures

We define a risk-averse nonanticipative feasible policy for multistage stochastic programs and propose a methodology to implement it. The approach is based on dynamic programming equations written for a risk-averse formulation of the problem. This formulation relies on a new class of multiperiod risk functionals called extended polyhedral risk measures. Dual representations of such risk functio...

متن کامل

Working Paper on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs

A general decomposition framework for large convex optimization problems based on augmented Lagrangians is described. The approach is then applied to multistage stochastic programming problems in two di erent ways: by decomposing the problem into scenarios and by decomposing it into nodes corresponding to stages. Theoretical convergence properties of the two approaches are derived and a computa...

متن کامل

On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs

We prove the almost-sure convergence of a class of samplingbased nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions, and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to problems with general convex cost...

متن کامل

SDDP for multistage stochastic linear programs based on spectral risk measures

We consider risk-averse formulations of multistage stochastic linear programs. For these formulations, based on convex combinations of spectral risk measures, risk-averse dynamic programming equations can be written. As a result, the Stochastic Dual Dynamic Programming (SDDP) algorithm can be used to obtain approximations of the corresponding risk-averse recourse functions. This allows us to de...

متن کامل

Cut sharing for multistage stochastic linear programs with interstage dependency

Multistage stochastic programs with interstage independent random parameters have recourse functions that do not depend on the state of the system. Decomposition-based algorithms can exploit this structure by sharing cuts (outer-linearizations of time recourse function) among different scenario subproblems at the same stage. The ability to share cuts is necessary in practical implementations of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016